Sensitive seismic sensors based on microwave frequency fiber interferometry in commercially deployed cables


  • Harris, RH Large earthquakes and creeping faults. Rev. geophysics. 55169–198 (2017).

    ADS Google Scholar

  • Sigmundsson, F. et al. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517191–195 (2015).

    ADS CAS PubMed Google Scholar

  • Witze, A. Volcano risk quantified. Nature 51916–17 (2015).

    ADS CAS PubMed Google Scholar

  • Mooney, WD & Ginzburg, A. Seismic measurements of the internal properties of fault zones. Pure Appl. geophysics. 124141–157 (1986).

    ADS Google Scholar

  • Ben-Zion, Y. Properties of seismic fault zone waves and their utility for imaging low-velocity structures. J. Geophys. res. 10312567–12585 (1998).

    ADS Google Scholar

  • Carter, L., Gavey, R., Talling, PJ & Liu, JT Insights into submarine geohazards from breaks in subsea telecommunication cables. Oceanography 2758–67 (2014).

    Google Scholar

  • Chiocci, FL, Cattaneo, A. & Urgeles, R. Seafloor mapping for geohazard assessment: state of the art. mar. geophysics. res. 321–11 (2011).

    Google Scholar

  • Blanck, H., Jousset, P., Ágústsson, K., Hersir, G. P. & Flóvenz . G. Analysis of seismological data on Reykjanes peninsula, Iceland. In Extended Abstract EGCStrasbourg (2016).

  • Winzer, PJ Fiber-Optic Transmission Systems from Chip-to-Chip Interconnects to Trans-Oceanic Cables. Handbook of Laser Technology and Applications: Laser Applications: Medical, Metrology and Communication (Volume Four) 4427 (2021).

  • Agrawal, Govind P. Fiber-optic communication systems. 222.John Wiley & Sons (2012).

  • Hartog, AH An Introduction to Distributed Optical Fiber Sensors (CRC Press, 2017).

    Google Scholar

  • Daley, TM et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. lead. Edge 32699–706 (2013).

    Google Scholar

  • Lindsey, NJ et al. Fiber-optic network observations of earthquake wavefields. geophysics. res. lett. 4411–792 (2017).

    Google Scholar

  • Zeng, X. et al. Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at garner valley, california. bull. Seismic Mole. social. am. 107603–610 (2017).

    Google Scholar

  • Zhan, Z. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas. Seismic Mole. res. lett. 911–15 (2020).

    Google Scholar

  • Zhou, DP, Qin, Z., Li, W., Chen, L. & Bao, X. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry. Opt. express 2013138–13145 (2012).

    ADS PubMed Google Scholar

  • Song, J. et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry. IEEE Photon. j. 61–8 (2014).

    Google Scholar

  • Li, H., Liu, Q., Chen, D., Deng, Y. & He, Z. High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression. Opt. lett. 45563–566 (2020).

    ADS Google Scholar

  • Masoudi, A. & Newson, TP High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution. Opt. lett. 42290–293 (2017).

    ADS CAS PubMed Google Scholar

  • He, Z. & Liu, Q. Optical fiber distributed acoustic sensors: A review. J. Lightwave Technol. 393671–3686 (2021).

    ADS Google Scholar

  • Jousset, P. et al. Dynamic strain determination using fiber-optic cables allows imaging of seismological and structural features. Wet. Communion. 92509 (2018).

    ADS PubMed PubMed Central Google Scholar

  • Lindsey, NJ, Dawe, TC & Ajo-Franklin, JB Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. science 3661103–1107 (2019).

    ADS CAS PubMed Google Scholar

  • Cheng, F., Chi, B., Lindsey, NJ, Dawe, TC & Ajo-Franklin, JB Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization. sci. Rep. 111–14 (2021).

    Google Scholar

  • Waagard, OH et al. Real-time low noise distributed acoustic sensing in 171 km of low loss fiber. OSA Contin. 4688–701 (2021).

    CAS Google Scholar

  • Cartlidge, E. DAS: A seismic shift in sensing. Opt. Photonics News 3226–33 (2021).

    ADS Google Scholar

  • Marra, G. et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. science 361486–490 (2018).

    ADS CAS PubMed Google Scholar

  • Venkatesh, S. & Sorin, WV Phase noise considerations in coherent optical FMCW reflectometry. J. Lightw. technology. 111694–1700 (1993).

    ADS Google Scholar

  • Henry, C. Phase noise in semiconductor lasers. J. Lightw. technology. 4298–311 (1986).

    ADS Google Scholar

  • Gundavarapu, S. et al. Sub-hertz fundamental line width photonic integrated Brillouin laser. Wet. photon. 1360–67 (2019).

    ADS CAS Google Scholar

  • Zhan, Z. et al. Optical polarization–based seismic and water wave sensing on transoceanic cables. science 37931–936 (2021).

    ADS Google Scholar

  • Mecozzi, A. et al. Polarization sensing using submarine optical cables. Optics 8788–795 (2021).

    ADS Google Scholar

  • Bogris, A. et al. Microwave frequency dissemination systems as sensitive and low-cost interferometers for earthquake detection on commercially deployed fiber cables In 2022 Optical Fiber Communications Conference and Exhibition (OFC) (2021).

  • Huang, J. et al. Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing. IEEE Photon. technology. lett. 271398–1401 (2015).

    ADS CAS Google Scholar

  • Hua, L. et al. Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing. app. Opt. 547181–7187 (2015).

    ADS CAS PubMed Google Scholar

  • Dong, H., Liu, S., Yang, L., Peng, J. & Cheng, K. Optical fiber displacement sensor based on microwave photonics interferometry. Sensors 183702 (2018).

    ADS PubMed Central Google Scholar

  • Lopez, O., Amy-Klein, A., Lours, M., Chardonnet, C. & Santarelli, G. High-resolution microwave frequency dissemination on an 86-km urban optical link. app. Phys. B 98723–727 (2010).

    ADS CAS Google Scholar

  • Daussy, C. et al. Long-distance frequency dissemination with a resolution of 10-17. Phys. Rev. lett. 94203904 (2005).

    ADS CAS PubMed Google Scholar

  • Bertholds, A. & Dandliker, R. Determination of the individual strain-optic coefficients in single-mode optical fibres. J. Lightw. technology. 617–20 (1988).

    ADS CAS Google Scholar

  • Kennett, BL, Engdahl, ER & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. geophysics. J. Int. 122(1), 108–124 (1995).

    ADS Google Scholar

  • Storchak, DA, Schweitzer, J. & Bormann, P. The IASPEI standard seismic phase list. Seismic Mole. res. lett. 74761–772 (2003).

    Google Scholar

  • Lior, I. et al. Strain to ground motion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop determination. Solid Earth 121421–1442 (2021).

    ADS Google Scholar

  • Zhu, S., Li, M., Zhu, NH & Li, W. Transmission of dual-chirp microwave waveform over fiber with compensation of dispersion-induced power fading. Opt. lett. 432466–2469 (2018).

    ADS CAS PubMed Google Scholar

  • Li, S., Zheng, X., Zhang, H. & Zhou, B. Compensation of dispersion-induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation. Opt. lett. 36546–548 (2011).

    ADS PubMed Google Scholar

  • Nikas, T., Bogris, A. & Syvridis, D. Double sideband suppressed carrier modulation for stable fiber delivery of radio frequency standards. Opt. Communion. 382182–185 (2007).

    ADS Google Scholar

  • Fu, Y., Zhang, X., Hraimel, B., Liu, T. & Shen, D. Mach-Zehnder: a review of bias control techniques for Mach-Zehnder modulators in photonic analog links. IEEE Microwave Mag. 14102–107 (2013).

    Google Scholar

  • Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Wet. photon. 1380–90 (2019).

    ADS CAS Google Scholar

  • Burla, M. et al. 500 GHz plasmonic Mach–Zehnder modulator enabling sub-THz microwave photonics. APL Photon. 4056106 (2019).

    ADS Google Scholar

  • Salamin, Y. et al. 100GHz plasmonic photo detector. ACS Photon. 53291–3297 (2018).

    CAS Google Scholar

  • Khaouani, M. et al. An ultrafast multi-layer Graphene/InGaAs/InAlAs/InAs PIN photodetector with 100 GHz bandwidth. Optik 227165429 (2021).

    ADS CAS Google Scholar

  • Mazur, M., et al. Transoceanic Phase and Polarization Fiber Sensing using Real-Time Coherent Transceiver. arXiv:2109.06820 (2021).

  • Yan, Y. et al. Forward transmission based ultra-long distributed vibration sensing with wide frequency response. J. Lightw. technology. 392241–2249 (2020).

    ADS Google Scholar

  • Fichtner, A. et al. Theory of phase transmission fibre-optic deformation sensing. geophysics. J. Int. 2311031–1039 (2022).

  • Fichtner, A. et al. Sensitivity kernels for transmission fiber optics. geophysics. J. Int. 2311040 (2022).

  • https://accelnet.gein.noa.gr/.

  • Leave a Comment

    Your email address will not be published.